Perovskite quantum dots are semiconducting nanocrystals. Compared to metal chalcogenide quantum dots, perovskite quantum dots are more tolerant to defects and have excellent photoluminescence quantum yields and high colour purity. These properties are highly desirable for electronic and optoelectronic applications and hence perovskite quantum dots have huge potential for real world applications including LED displays and quantum dot solar cells.
Ossila supplies high quality, low price perovskite quantum dots from £45.00.
Caesium lead perovskite quantum dots of chloride/bromide (450 nm, blue), bromide (515 nm, green) and iodide (685 nm, red) are now available.
A quantum dot (QD), or semiconducting nanocrystal (NC), is a single crystal of a semiconducting material measuring only a few nanometres in diameter. When excited, the small size of the crystal acts a ‘quantum box’ and confines electrons and holes in an volume smaller than the corresponding exciton Bohr radius. The smaller the dot, the greater the confinement energy and the higher the energy of photons that are absorbed or emitted.
The most well-studied quantum dots are metal chalcogenide quantum dots based on semiconductors such as cadmium selenide, indium phosphide or Lead(II)sulfide. The bandgap of such quantum dots can be tuned throughout the entire visible spectrum simply by changing their size during chemical synthesis.
For the highest photoluminescence quantum yields (PLQYs), a core/shell structure is usually required. In this arrangement, a second semiconductor is used to encapsulate the nanocrystal (e.g. CdSe/CdS, InP/ZnS). This material passivates surface defects of the emissive core which would otherwise act as non-radiative recombination sites for excitons.
Due to their high PLQY, relative ease of fabrication and wide emission-colour tunability, quantum dots having this type of structure are especially suitable for application in display and imaging technologies - and are already appearing in commercial products such as televisions.
A new class of quantum dot is emerging based on perovskites. These have already been shown to have properties rivalling or exceeding those of metal chalcogenide QDs.
Due to their outstanding photovoltaic performance, perovskites are receiving significant attention from the research community. Recently, has been shown that reducing the dimensions of a perovskite crystal down to a few nanometres results in the creation of quantum dots with very high photoluminescence quantum yields and excellent colour purity (i.e. narrow emission linewidths of ~10 nm for blue emitters and 40 nm for red emitters [1]).
These quantum dots are highly tolerant to defects, as they require no passivation of the surface to retain their high PLQY. Although defect and trap sites are present, their energies are positioned outside the bandgap and are either located within the conduction or valence bands [2]. Such perovskite nanocrystals are simple to synthesise in a colloidal suspension and are easily integrated into optoelectronic devices using readily available processing techniques, making them a strong contender for future technologies.
For more information, please see the properties tab.
Perovskite quantum dots are currently less well researched than other types of quantum dot. However, they have shown great potential for a range of different applications in optoelectronics and nanotechnology. For example, perovskite quantum dots have been used to create solar cells having power conversion efficiencies that exceed that of comparable devices based on more conventional semiconductor nanocrystal materials.
Potential applications for perovskite quantum dots include:
For more information, please see the applications tab.
CAS number | 15243-48-8 |
Chemical formula | CsPbBr3 |
Molecular weight | 579.82 g/mol |
Full name | Caesium lead tribromide quantum dots |
Synonyms | Caesium lead bromide quantum dots |
Classification / Family | Perovskite quantum dots, Perovskite nanocrystal solutions, Cadmium-free quantum dots, Quantum dot solutions, Green emitter, Quantum dot LEDs (QDLEDs), Perovskite LEDs (PeLEDs), Perovskite solar cells (PvSCs) |
Purity | 99% |
Appearance | Yellow Liquid |
Emission Peak | 515 nm |
Emission Linewidth (FWHM) | 21 nm |
Photoluminescence Quantum Yield | 60 - 70% |
CAS number | Not available |
Chemical formula | CsPbCl1.5Br1.5 |
Molecular weight | 513.14 g/mol |
Full name | Caesium lead chloride bromide quantum dots |
Synonyms | Caesium lead chloride bromide quantum dots |
Classification / Family | Perovskite quantum dots, Perovskite nanocrystal solutions, Cadmium-free quantum dots, Quantum dot solutions, Green emitter, Quantum dot LEDs (QDLEDs), Perovskite LEDs (PeLEDs), Perovskite solar cells (PvSCs) |
Purity | 99% |
Appearance | Clear Liquid |
Emission Peak | 450 nm |
Emission Linewidth (FWHM) | 20 nm |
Photoluminescence Quantum Yield | 30 - 40% |
CAS number | 18041-25-3 |
Chemical formula | CsPbI3 |
Molecular weight | 720.82 g/mol |
Full name | Caesium lead triiodide quantum dots |
Synonyms | Caesium lead iodide quantum dots |
Classification / Family | Perovskite quantum dots, Perovskite nanocrystal solutions, Cadmium-free quantum dots, Quantum dot solutions, Green emitter, Quantum dot LEDs (QDLEDs), Perovskite LEDs (PeLEDs), Perovskite solar cells (PvSCs) |
Purity | 99% |
Appearance | Dark Red Liquid |
Emission Peak | 688 nm |
Emission Linewidth (FWHM) | 39 nm |
Photoluminescence Quantum Yield | 60 - 70% |
CsPbBr3 Perovskite Quantum Dots Absorption Spectra
CsPbBr3 Perovskite Quantum Dots Photoluminescence Spectra
CsPbCl1.5Br1.5 Perovskite Quantum Dots Photoluminescence Spectra
CsPbI3 Perovskite Quantum Dots Photoluminescence Spectra
CsPbBr3 Perovskite Quantum Dots in Toluene
CsPbBr3 Perovskite Quantum Dots in Octane
Halide perovskite nanocrystals have a cubic crystal structure with the chemical formula A+Pb2+X-3. They can be classed as an organic-inorganic hybrid, where A is an organic cation such as methylammonium (MA) or formamidinium (FA), or fully inorganic (A=Cs), and where X is a halogen (Cl, Br or I). Due to the lack of volatile organics, fully-inorganic nanocrystals tend to have better stability and higher PLQY (>90%) than hybrid organic-inorganic materials [3]. Mixed halide perovskites can also be produced where X is a mixture of Cl/Br or Br/I.
For visible optoelectronic applications, the nanocrystals are generally synthesised to have a size of 4 - 15 nm (dependent on the halogen atom and the required optical properties). The emission wavelength can be tuned through the entire visible spectrum (400 - 700nm [4]) by changing either the nanocrystal size or halide ratio (for mixed halide systems).
The first hybrid organic-inorganic perovskite quantum dot colloidal synthesis of MAPbBr3 was reported by Schmidt et al. using a hot injection method (similar to that used to synthesise metal chalcogenide QDs [4]). A mixture of methylamine bromide and lead bromide was injected into an octadecene solution containing oleic acid and a long chain alkyl ammonium bromide. The PLQY of the resulting QDs was ~20%, and was stable for several months due to the stabilising and capping effects of the ammonium bromide and oleic acid. By optimisation of the reactant molar ratios, the PLQY was increased to over 80% [5], and later to ~100% by changing the capping ligand [6].
Hot injection was again used for the colloidal synthesis of inorganic metal-halide perovskite quantum dots, first reported by Protesescu et al [1]. That recipe developed was as follows:
The resulting nanocrystals have surface ligands comprised of OA and OLA [3]. Such nanocrystals were found to have PLQYs up to ~90%, with the smallest crystals (4 nm diameter) having an emission linewidth (full width half maximum) of 12 nm at an emission wavelength of 410 nm, with the largest quantum dots (15 nm diameter) having a linewidth of 42 nm at 700 nm.
An advantage that perovskite quantum dots have over their metal chalcogenide counterparts is the simplicity by which their emission properties can be modified. In addition to tuning the emission wavelength during synthesis through reaction temperature (and ultimately, nanocrystal size), it can also be changed post-synthesis through an anion-exchange reaction [7,8]. By mixing a donor halide source such as octadecylammonium (ODA-Y), chloro-oleyalmine-oleylammonium chloride (OLAM-Y) or tetrabutylammonium (TBA-Y) halide (where Y is Cl, Br or I) with a solution of CsPbX3 nanocrystals, the chemical composition of the nanocrystals can be tuned continuously over the range CsPb(X1-Z:YZ), where 0≤Z≤1.
Anion exchange is followed by lattice reconfiguration, giving a mixed halide structure. This results in a single emission peak at an energy somewhere in between those of the constituent nanocrystals, thereby retaining the narrow linewidth needed for color purity. However it has been found that direct conversion between CsPbI3 and CsPbCl3 is not possible because of the large mismatch in the size of the halide ions.
It has also been demonstrated that this anion exchange process can be easily accomplished by simply mixing different stock solutions of the nanocrystal constituents at different volume ratios (e.g. CsPbBr3 and CsPbI3 to obtain CsPb(Br1-Z:IZ)3 [7,9]). Both methods allow the nanocrystal emission to be tuned over the entire visible range while retaining a high PLQY and color purity. The anion exchange process can however be suppressed by adding polyhedral oligomeric silsesquioxane (POSS) to the solution. This creates a protective cage around the nanocrystals, and allows mixing of different halide compositions while retaining the photoluminescent properties of the constituent nanocrystals. It also has the added effect of protecting the nanocrystals from water [10].
Perovskite quantum dots have huge potential for a range of applications in electronics, optoelectronics and nanotechnology. Currently, the field is not well researched, but initial results are extremely promising. Details on a selection of the applications that have been investigated are given below.
Currently, reports of perovskite quantum dot solar cells are still limited, especially when compared to bulk and 2-dimensional perovskites. This is likely due to the limited time that such materials have been available. However, recent results suggest that perovskite quantum dots could play a role future photovoltaic devices.
The first use of perovskite quantum dots in solar cells was in 2011 by Im et al., where MaPbI3 nanocrystals acted as a light-sensitiser in a structure resembling a dye-sensitised solar cell [16], with a power conversion efficiency of 6.5% reported. This result predated the synthesis of colloidal perovskite quantum dots, and the nanocrystals were instead formed through surface interactions when a mixture of methylammonium iodide and lead iodide was spincast onto a TiO2 surface.
At room temperature, bulk CsPbI3 forms an orthorhombic crystal lattice with a large bandgap of ~2.8 eV. The cubic phase is far more suitable for photovoltaic applications as a result of a narrower bandgap (1.73 eV). However, this phase only forms in bulk CsPbI3 at temperatures above 300°C. Due to the elevated temperature and the effect of reduced surface area, all CsPbX3 nanocrystals crystallise into the cubic phase during synthesis. In contrast CsPbCl3 and CsPbBr3 quantum dots are phase-stable in the cubic polymorph over long periods, however CsPbI3 will convert back to an orthorhombic configuration over a few days in ambient conditions.
Swarnkar et al. showed that treating spincast CsPbI3 quantum dot films with methyl acetate stabilises the cubic structure [17]. This was achieved by changing the surface energy via the removal of unreacted precursors - without causing the aggregation of the dots. The resulting film was stable for months under ambient conditions, and had excellent optoelectronic properties. Indeed, when fabricated into solar cells, such films achieved a PCE of over 10% and had a large open-circuit voltage of 1.23 V. Furthermore, LEDs incorporating stabilised CsPbI3 nanocrystals as the active layer displayed a low turn-on voltage of < 2 V.
It was later demonstrated that coating the nanocrystals in A+X- (where A is formamidinium, methylammonium or Cs, and X is I or Br) further improves charge-carrier mobility of the nanocrystal films. This allowed solar cells having a PCE of 13.4% to be fabricated – the highest efficiency photovoltaics based on quantum dots of any kind [18]. This result is promising for the development of perovskite tandem solar cells; here a bulk perovskite film performs the role of the low bandgap absorber, with the perovskite quantum dot layer acting as a complementary wide bandgap absorber [19].
Metal chalcogenide quantum dots already play a role in consumer display products - so the increased PLQY, ease of synthesis, excellent colour purity, and wide colour tunability of perovskite quantum dots suggest that they should be well-suited to such applications. However, charge injection and transport in nanocrystal films must be optimised in order to achieve high-efficiency devices.
First devices by Song et al. used an ITO/PEDOT:PSS/PVK/CsPbX3/TPBi/LiF/Al structure to demonstrate blue, green, and orange LEDs [11]. While the emission linewidths were narrow, the brightness of the LEDs was modest (<1000 cdm-2), and the external quantum efficiencies (EQE) were limited to ~0.1%.
Li et al. showed the importance of nanocrystal surface chemistry; here the EQE of CsPbBr3 nanocrystal LEDs was increased by 50x (0.12% to 6.27%) through the optimisation of device charge-transport layers and surface ligand density control (achieved through the use of a washing procedure using hexane and ethyl acetate [3]). While ligands are needed to passivate the quantum dot surface and prevent aggregation (leading to high PLQY and greater stability), an excessive density of surface ligands can inhibit electrical injection and transport. By tuning the ligand density, a brightness of >15,000 cdm-2 was obtained that was accompanied by high colour purity (20 nm emission linewidth using ~8 nm nanocrystals).
One proposal that bypasses the electrical properties of nanocrystal films is to use them as down-converters for inorganic blue or UV LEDs. Pathak et al. dissolved hybrid organic-inorganic perovskite quantum dots of various mixed halide compositions (emitting green or red luminescence) into a polystyrene polymer solution which was then spincast into a thin film [12]. The polystyrene polymer acted as an insulating matrix that prevented anion exchange, thereby preserving the individual emission peaks of the constituent nanocrystals and allowing the generation of white light when illuminated with a commercial blue LED.
Amplified spontaneous emission (ASE) has been observed in dropcast films of CsPbBr3, and mixed CsPb(Br/I)3 and CsPb(Cl/Br)3 nanocrystals. Pump thresholds can be as low as 5 µJ cm-2 [13]; a value that compares very favourably with other colloidal QD systems (e.g. an order of magnitude lower than spectrally similar CdSe QDs). The ASE emission intensity is extremely stable in air, dropping by only 10% after several hours of irradiation and ~107 shots in ambient conditions. This performance also compares extremely well to chalcogenide QDs [14]. The stimulated emission has been identified as resulting from the recombination of biexcitons (which are more stable at room temperature than excitons), with red-shifted emission leading to reduced self-absorption (and hence low lasing thresholds). The ASE wavelength can also be tuned throughout the entire visible spectrum via mixing the halide composition.
Lasing was observed in a whispering gallery mode configuration. It was later shown that stimulated emission could be observed in CsPbBr3 nanocrystal films following two-photon absorption [15]. Here, it was found that the two-photon absorption cross-section was 2 orders of magnitude larger than that of similar metal chalcogenide quantum dots, leading to a stimulated emission threshold of green-emitting CsPbBr3 nanocrystals of 2.5 mJ cm-2. This is far lower than core-shell metal chalcogenide quantum dots. This non-linear stimulated emission could also be tuned across the visible wavelengths by varying the mixed halide composition. Green stimulated emission from CsPbBr3 quantum dots (following three-photon absorption) was also observed – a first for any type of quantum dot. For this reason, perovskite quantum dots present an exciting prospect for the development of next-generation lasers.
Single photon sources are required for new light-based quantum information systems. Here, current efforts mainly focus on the use of epitaxially-grown quantum dots, diamond colour centers and colloidal nanocrystals. Of these, colloidal NCs are the most promising for room-temperature visible operation [20].
Dilute CsPbX3 (X=Br, I or Br/I) NC solutions have been spincast to create spatially-separated individual QDs [20,21]. Imaging the photoluminescence from individual NCs showed the blinking behaviour that is characteristic of single emitters. Photon coincidence counting revealed low g(2) values of ~6%, demonstrating the realisation of an efficient, anti-bunched single photon source at room temperature – all of which are desirable characteristics for emergent quantum technologies.
In comparison with metal chalcogenide QDs, metal halide perovskite QDs display shorter fluorescence lifetimes and higher absorption coefficients and are therefore faster and more efficient sources of single photons.
The high absorption coefficient of perovskite QDs over a wide spectral range may make them suitable candidates for use in light-detection devices. Pan et al. have reported the fabrication of a phototransistor based on FAPbBr3 quantum dots and graphene [22]. The QDs which act as the light absorber, are deposited onto a monolayer of graphene that transports photoexcited charges to the source/drain. Such phototransistors have a broad response spanning the visible spectrum, although they have reduced response to photons having energies below the semiconductor bandgap (540 nm). Here, a photoresponsivity of 1.15×105 AW-1 was observed at 520 nm; a value that is amongst the highest of any graphene-based photodetectors.
Perovskite | Solvent | Concentration | Volume | Product Code | Price |
CsPbX3 | Toluene | 10 mg.ml-1 | 1 ml | M2124 | £45.00 |
CsPbX3 | Toluene | 10 mg.ml-1 | 5 ml | M2124 | £200.00 |
CsPbX3 | Toluene | 10 mg.ml-1 | 10 ml | M2124 | £350.00 |
CsPbX3 | Toluene | 10 mg.ml-1 | 25 ml | M2124 | £700.00 |
CsPbX3 | Octane | 10 mg.ml-1 | 1 ml | M2124 | £45.00 |
CsPbX3 | Octane | 10 mg.ml-1 | 5 ml | M2124 | £200.00 |
CsPbBr3 | Octane | 10 mg.ml-1 | 10 ml | M2124 | £350.00 |
CsPbX3 | Octane | 10 mg.ml-1 | 25 ml | M2124 | £700.00 |
Shipping is free for qualifying orders placed via our secure online checkout.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
Ossila was founded in 2009 by organic electronics research scientists with the aim of providing the components, equipment and materials to enable faster and smarter research and discovery. We have grown a lot since then and are proud to now supply our products to over 1000 different institutions in over 67 countries across the world.
Having spent many years both in industry and academia developing organic and thin film LEDs, photovoltaics and FETs, we know how long it takes to develop a reliable and efficient device fabrication and testing process. As such, we have developed packages of products and services to enable researchers to jump-start their organic electronics or materials research development program.
Our research scientists have significant experience in the processing of materials into LEDs, PVs and FETs, and amongst our team of physicists, chemists and engineers we have a huge collection of knowledge on thin film processing, electronics and characterisation. The vision behind Ossila is to share this experience with academic and industrial researchers alike and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science.
蚂蚁淘(ebiomall)是苏州蚂蚁淘生物科技有限公司旗下的生物医学科研用品跨境直采(平行进口)平台,自营B2B电商。客户在蚂蚁淘搜索全球产品信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外办事处进行跨境采购、运输到中国口岸,最后由蚂蚁淘国内团队清关并发货给客户。
蚂蚁淘提供“正品保障”、“查价工具”、“限时必达”、“近期拼团”、“现货特惠”、“1元拍卖”“抢购秒杀”、“购物有礼”、“万众创业”等服务,致力于优化供需资源匹配,简化采购流程,加快商品流通速度,数据真实可靠,营造健康的生命科学用品在线交易生态圈。
蚂蚁淘特点:
“专业团队”,蚂蚁淘由产品运营和X实验室两个大团队,其中产品运营团队都是长期从事生命科学用品代理销售行业市场营销、推广销售、采购报关、物流仓储、客服顾问方面的专业人才组成,而我们的X实验室团队主要来自一家已上市的医疗器械B2B平台的项目开发团队。
“标准信息”,蚂蚁淘肩负实现生物医疗科研领域资讯及产品信息全球同步的使命,我们的产品信息全面且做标准化处理,涉及数万家全球优质厂方资源以及百万数量级的生命科学用品信息;
“限时必达”,这是蚂蚁淘的又一大“杀手锏”,部分产品蚂蚁淘提供“时必达”服务,客户在蚂蚁淘下单开始,十天内收到货物,每延迟一天,蚂蚁淘赔付货款的5‰;
“正品低价”,蚂蚁淘不生产生命科学用品,我们搭建的是厂方跟客户的桥梁,客户可以在订单详情查看到所有记录,保障货物由从厂方直接发出,同时蚂蚁淘会不断跟各厂方签订合作协议并公示给客户,建立起彼此的信任;同时,蚂蚁淘采用的是全球直采模式,我们承诺我们的价格具有一定的优势;
“查价工具”,蚂蚁淘是一个查价工具,摒弃行业虚假价格诟病,我们平台的所有数据由蚂蚁淘负责维护,信息唯一且真实可靠,客户可以节省询价的宝贵时间,避免不靠谱的报价;
“物流链共享”,蚂蚁淘可与厂方、客户共享自己的仓储、物流、报关等功能模块;
“正规清关”,我们拒绝人肉代购,CIF100%正规报关,提供17%增票,避免法律风险;
“沟通简单”,如果客户在下单方面有任何疑问,可以随时咨询我们的产品顾问,经验丰富的客服团队,一对一贴心服务,订单详情在线可查,省心省力;
“万众创业”,创业有我,助力梦想起航。“大众创业,万众创新”大浪潮来袭!创业正当时!想加入创业大军的你,在没经验,没方向,没技术,没资源等现实面前停止了创业梦?快来加入蚂蚁淘在校创业合伙人团队,我们找的就是你!
借助互联网平等而开放的力量,矢志实现生命科学领域全球的信息同步与标准化,简化科学家的采购流程,节省科学家宝贵时间。我们相信一群充满梦想的人,可以凭借着专业与执着,让您的购物更轻松!
(蚂蚁淘启动仪式)
(蚂蚁淘徽杭古道自由行)
LOGO诠释
蚂蚁淘的Logo是一个箱子的正视和俯视组成的类三维图,箱子可以包含蚂蚁表达的含义,即运输。E是蚂蚁的首字母(emmet),是ebiomall的首字母,更重要的是E有其他更多的符合我们理念的含义;
1、真实直率(Explicit)
2、极速(Express)
3、轻松购(Easypurchase)
4、高效的(Efficient)
5、电子商务(ElectronicCommerce)
大事记